Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38256925

RESUMO

Fibrinolysis is the process of the fibrin-platelet clot dissolution initiated after bleeding has been stopped. It is regulated by a cascade of proteolytic enzymes with plasmin at its core. In pathological cases, the balance of normal clot formation and dissolution is replaced by a too rapid lysis, leading to bleeding, or an insufficient one, leading to an increased thrombotic risk. The only approved therapy for emergency thrombus lysis in ischemic stroke is recombinant tissue plasminogen activator, though streptokinase or urokinase-type plasminogen activators could be used for other conditions. Low molecular weight compounds are of great interest for long-term correction of fibrinolysis dysfunctions. Their areas of application might go beyond the hematology field because the regulation of fibrinolysis could be important in many conditions, such as fibrosis. They enhance or weaken fibrinolysis without significant effects on other components of hemostasis. Here we will describe and discuss the main classes of these substances and their mechanisms of action. We will also explore avenues of research for the development of new drugs, with a focus on the use of computational models in this field.

2.
Molecules ; 29(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38257286

RESUMO

Cardiovascular diseases caused by blood coagulation system disorders are one of the leading causes of morbidity and mortality in the world. Research shows that blood clotting factors are involved in these thrombotic processes. Among them, factor Xa occupies a key position in the blood coagulation cascade. Another coagulation factor, XIa, is also a promising target because its inhibition can suppress thrombosis with a limited contribution to normal hemostasis. In this regard, the development of dual inhibitors as new generation anticoagulants is an urgent problem. Here we report the synthesis and evaluation of novel potential dual inhibitors of coagulation factors Xa and XIa. Based on the principles of molecular design, we selected a series of compounds that combine in their structure fragments of pyrrolo[3,2,1-ij]quinolin-2-one and thiazole, connected through a hydrazine linker. The production of new hybrid molecules was carried out using a two-stage method. The reaction of 5,6-dihydropyrrolo[3,2,1-ij]quinoline-1,2-diones with thiosemicarbazide gave the corresponding hydrazinocarbothioamides. The reaction of the latter with DMAD led to the target methyl 2-(4-oxo-2-(2-(2-oxo-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-1(2H)-ylidene)hydrazineyl)thiazol-5(4H)-ylidene)acetates in high yields. In vitro testing of the synthesized molecules revealed that ten of them showed high inhibition values for both the coagulation factors Xa and XIa, and the IC50 value for some compounds was also assessed. The resulting structures were also tested for their ability to inhibit thrombin.


Assuntos
Doenças Cardiovasculares , Fator Xa , Humanos , Trombina , Anticoagulantes/farmacologia , Coagulação Sanguínea
3.
Molecules ; 28(9)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37175261

RESUMO

Despite extensive research in the field of thrombotic diseases, the prevention of blood clots remains an important area of study. Therefore, the development of new anticoagulant drugs with better therapeutic profiles and fewer side effects to combat thrombus formation is still needed. Herein, we report the synthesis and evaluation of novel pyrroloquinolinedione-based rhodanine derivatives, which were chosen from 24 developed derivatives by docking as potential molecules to inhibit the clotting factors Xa and XIa. For the synthesis of new hybrid derivatives of pyrrolo[3,2,1-ij]quinoline-2-one, we used a convenient structural modification of the tetrahydroquinoline fragment by varying the substituents in positions 2, 4, and 6. In addition, the design of target molecules was achieved by alkylating the amino group of the rhodanine fragment with propargyl bromide or by replacing the rhodanine fragment with 2-thioxoimidazolidin-4-one. The in vitro testing showed that eight derivatives are capable of inhibiting both coagulation factors, two compounds are selective inhibitors of factor Xa, and two compounds are selective inhibitors of factor XIa. Overall, these data indicate the potential anticoagulant activity of these molecules through the inhibition of the coagulation factors Xa and XIa.


Assuntos
Fator XIa , Rodanina , Fator XIa/química , Inibidores do Fator Xa/química , Rodanina/química , Anticoagulantes/farmacologia , Fator Xa
4.
Curr Top Med Chem ; 21(6): 507-546, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33292135

RESUMO

Docking is in demand for the rational computer aided structure based drug design. A review of docking methods and programs is presented. Different types of docking programs are described. They include docking of non-covalent small ligands, protein-protein docking, supercomputer docking, quantum docking, the new generation of docking programs and the application of docking for covalent inhibitors discovery. Taking into account the threat of COVID-19, we present here a short review of docking applications to the discovery of inhibitors of SARS-CoV and SARS-CoV-2 target proteins, including our own result of the search for inhibitors of SARS-CoV-2 main protease using docking and quantum chemical post-processing. The conclusion is made that docking is extremely important in the fight against COVID-19 during the process of development of antivirus drugs having a direct action on SARS-CoV-2 target proteins.


Assuntos
Antivirais/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Simulação de Acoplamento Molecular/métodos , Medicamentos sob Prescrição/química , Inibidores de Proteases/química , SARS-CoV-2/química , Sequência de Aminoácidos , Antivirais/classificação , Antivirais/farmacologia , Domínio Catalítico , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/genética , Proteases 3C de Coronavírus/metabolismo , Desenho de Fármacos , Reposicionamento de Medicamentos/métodos , Expressão Gênica , Humanos , Medicamentos sob Prescrição/classificação , Medicamentos sob Prescrição/farmacologia , Inibidores de Proteases/classificação , Inibidores de Proteases/farmacologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Relação Estrutura-Atividade , Tratamento Farmacológico da COVID-19
5.
J Mol Graph Model ; 78: 139-147, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29055806

RESUMO

Discovery of new inhibitors of the protein associated with a given disease is the initial and most important stage of the whole process of the rational development of new pharmaceutical substances. New inhibitors block the active site of the target protein and the disease is cured. Computer-aided molecular modeling can considerably increase effectiveness of new inhibitors development. Reliable predictions of the target protein inhibition by a small molecule, ligand, is defined by the accuracy of docking programs. Such programs position a ligand in the target protein and estimate the protein-ligand binding energy. Positioning accuracy of modern docking programs is satisfactory. However, the accuracy of binding energy calculations is too low to predict good inhibitors. For effective application of docking programs to new inhibitors development the accuracy of binding energy calculations should be higher than 1kcal/mol. Reasons of limited accuracy of modern docking programs are discussed. One of the most important aspects limiting this accuracy is imperfection of protein-ligand energy calculations. Results of supercomputer validation of several force fields and quantum-chemical methods for docking are presented. The validation was performed by quasi-docking as follows. First, the low energy minima spectra of 16 protein-ligand complexes were found by exhaustive minima search in the MMFF94 force field. Second, energies of the lowest 8192 minima are recalculated with CHARMM force field and PM6-D3H4X and PM7 quantum-chemical methods for each complex. The analysis of minima energies reveals the docking positioning accuracies of the PM7 and PM6-D3H4X quantum-chemical methods and the CHARMM force field are close to one another and they are better than the positioning accuracy of the MMFF94 force field.


Assuntos
Simulação por Computador , Modelos Moleculares , Simulação de Acoplamento Molecular/métodos , Proteínas/química , Domínio Catalítico , Ligação Proteica , Teoria Quântica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...